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SUMMARY 

Stream tube analysis, already applied to two-dimensional extrudate swell problems involving rate and integral 
constitutive equations for incompressible fluids, is now considered in the problem of free surface determination 
in a three-dimensional Bow situation. The method allows computation of the unknown free surface by 
considering only a ‘peripheral stream tube’ limited by the wall and the jet surface and an inner stream surface. 
Those boundary surfaces are determined by considering the conservation equations together with boundary 
condition equations, solved by the Levenberg/Marquatdt optimization algorithm. The method leads to a 
considerable reduction in the number of degrees of freedom and the storage area. As in a previous study in the 
two-dimensional case, singularity problems in the vicinity of the junction points between the wall and the free 
surface are avoided. However, the numerical method still allows evaluation of stress peaks due to the singularity 
at the exit, as may be observed for results obtained with a Newtonian fluid in a duct of square cross-section. 
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1. INTRODUCTION 

Significant advances were made in numerical simulations of three-dimensional extrudate swell 
problems at the end of the 1980s. They notably involved the works presented by Bush and Phan- 
Thien,’ Tran-Cong and Phan-Thier~,’.~ KaragiaMis et al. > Shiojima and Shimazaki,’ Wambersie and 
Crochet6 and Legat and Mar~hal.’.~ In relation to complex geometries of 3D flow situations, the 
authors adopted finite element methods to compute the relevant unknowns of the problem, namely 
velocity components (u, v ,  w)  and pressure p ,  leading to a great number of degrees of freedom. On 
one hand, purely viscous constitutive equations were generally considered in flow simulations of 
extrudate swell. On the other hand, 3D numerical flow simulations using memory-integral 
constitutive equations still remain a difficult task, since the flow path lines are not planar curves. 
This produces a very delicate particle tracking problem, since streamlines do not pass through mesh 
points. 

The stream tube method, introduced some years ago?’’ allows flow computation by means of an 
unknown transformation T, assumed to be one-to-one, between a physical flow domain D and its 
mapped domain D*, used as computational domain, in which transformed streamlines are parallel and 
straight. Conditions for application of stream tube analysis have been considered in several 
papers”.’ I and have also concerned flow situations with recirculations. ” Since extrudate swell flow 
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involves only open streamlines, a one-to-one transformation may be defined, leading to no restriction 
in applying stream tube analysis. Previous studies of two-dimensional swell flows with this method 
were carried out for differential1 3 and integralI4 constitutive equations. Before considering the 
numerical approach related to the three-dimensional flow problem, we find it of interest to summarize 
the main features of the stream tube method as follows. 

(i) Mass conservation is automatically verified by the formulation. In contrast with classical 
methods, the primary unknowns of the problem are the pressure and one or two mapping 
functions (for f and g) in the two-or three-dimensional case respectively. 

(ii) In 2D and 3D situations a very simple mesh may be built in the computational domain on the 
rectilinear mapped streamlines, leading to the definition of simple discretization schemes for 
solving the equations. The differential and integral operators which may be involved in 
viscoelastic constitutive equations may be easily taken into account.’ ’ , I 3  

(iii) The flow may be computed by considering successive subdomains of D, the stream tubes, 
from the wall to the central region, provided that the action of the complementary flow domain 
is taken into account. This property is to be emphasized in the case of the swelling flow 
problem, for which only consideration of the ‘peripheral stream tube’ involving the wall and 
the free surface permits determination of the unknown jet surface. Thus a reduction in the 
number of unknowns, leading to a significant shortening of computing time and storage 
memory, is expected when solving the relevant equations. 

In the present work concerned with the application of the stream tube method to numerical 
simulation of three-dimensional extrudate swell flows, only the purely viscous case is studied 
initially. Similarly to a recent study of two-dimensional swell  problem^,'^ the analysis presented here 
avoids considering explicitly the singularity problems in the vicinity of the junction points between 
the wall and the free surface. However, the calculations performed in the present work still enable the 
singularity effects at the exit section zo to be emphasized. The flow relates to the case of a die of 
constant cross-section along the z-axis, the duct length being considered as large enough to assume 
fully developed flow at sections z < zl. The flow domain is dehed  such that z, < z < z2. The section 
z2 starts the solid flow region in the free jet (Figure 1). 

Section 2 of the paper presents the basic elements of the stream tube method in relation to the 
three-dimensional free jet problem. In Section 3 we examine the approximating schemes presented 
for computing the unknowns. In Section 4 the governing equations are written, with the aim of 
considering the peripheral stream tube, limited inside by an inner stream surface of the physical 
domain and outside by the wall and the unknown free surface to be calculated. The criterion for 

PHYSICAL 
DOMAIN D 

MAPPED 
DOMAIN D* 

z 1  ZO 2 2  

P O l S E U I L L E  SOUD 
ROW ROW 

Figure 1. Physical and mapped domains in three-dimensional extrudate swell problem 
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determination of the jet surface is also examined. Section 5 presents the numerical procedure and 
swell results, obtained by using only the peripheral stream tube, for a Newtonian constitutive 
equation corresponding to the flow of a fluid emerging from a duct of square cross-section. 
Concluding remarks are given in Section 6. 

2. THE STREAM TUBE METHOD IN THREE-DIMENSIONAL EXTRUDATE SWELL 
PROBLEMS 

The physical and mapped domains D and D* corresponding to the transformation T D + D* are 
illustrated by the example of Figure 1. Cylindrical co-ordinates (r,  8, z) are used in the flow domain 
D. The mapped domain D* is defined as a straight cylinder whose basis is identical with the upstream 
cross-section A,, of the physical flow domain D at z = zl. This section limits the fully developed flow 
region where the kinematics are known. The domains D and D* are related to the equations 

r =f (R, o,z), e = o, z), z = z. (1) 

Here f and g denote the mapping functions related to T, to be determined numerically, and (R, 8, Z) 
are the cylindrical co-ordinates associated with the transformed domain D* where mapped 
streamlines are rectilinear and parallel to the z-axis. At section zl the relations 

r = R = f (R, rp, z = z,), e = rp = g(R,  CP, z = z,), z1 =z, (2) 

may easily be verified. From a geometrical viewpoint the mapping function f may be considered as a 
stream surface limiting a stream tube. Thus a streamline 9 is defined by the intersection of a stream 
surfacefand a surface g. By using cylindrical co-ordinates, it is possible to consider variations in the 
function g to be related to the ‘warping’ of the streamline curves, as illustrated in Figure 2. A plane 
flow situation is to be related to the case 8 = 9. 

SURFACE g SlREAM SURFACE f 

PHYSICAL DOMAIN D (r, 8, z) 

c z  

MAPPED DOMAIN D* (R, q,Z> 
Figure 2. Streamline curves in respective physical and mapped domains D and D* in streamtube analysis 
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The velocity vector V in cylindrical co-ordinates (r ,  8, z )  is given by 

v = U(r, e, z)cr + v(r, e, z)cg + W(r, e, Z)C, (3) 

and is known at the upstream section zl, by analytical or numerical means (see e.g. Reference 15), for 
a Newtonian fluid. Here (cr, cg, c,) denotes the orthonormal frame related to the cylindncal CO- 
ordinates. At the upstream Poiseuille flow section to the tube (z = zl) and the solid jet flow section 
( z  = z2) the velocity vector is assumed to be written as 

V = ~ ( r ,  8, zl)c, at z = zl, V = w2cr at z = z,. (4) 

where w2 denotes the solid flow velocity. 
The description of incompressible 3D flows by stream tube analysis has already been formulated in 

a previous paper" for confined ducts involving a circular upstream section. For a simply connected 
duct of general shape we may introduce a function Y(r,  6) at section z, via the relationship 

w(r, 8, z ~ )  = Y(r, e) / r ,  r # 0. ( 5 )  

Using the boundary condition equations (2), we still adopted the same notation for in order to 
consider, in terms of variables (R,  9, Z), a function related to a similar equation to equation ( 5 ) ,  as 

w(R, CP, Zl) = Y'(R, cp)/Rt R # 0. (6) 

Hence it may be shown that the velocity components are given by 

=f2-wt cp)lVA), v = g>'I"(R, cp)lA, w = Y(R, cp)lVA). (7) 

In equations (7), A denotes the Jacobian, assumed to be non-singular, of the transformation T: 

A = iw e,w(R,cp,z)i =&g; -f;gx. (8) 

The relations 

=f;sk -&961 c =&sX -A& (9) 

are also considered in order to simplify the writing of the equations. Derivative operators relating the 
sets of variables (r, 8, z) and (R, cp, Z) may be written as 

a/ar = (g;a/aR - g;a/acpj/A, 
a/az = (ra/aR + ca/acp)/A + a/az. 

alas = r-f;a/aR +f;a/acpl/A, 
(10) 

In this approach we consider stream surface f where cross-sections at z1 define contour values of 
the velocity component w (w = constant). Consequently, for simple connected ducts the stream tubes 
(related to the mapping function f to be determined) involved in the present flow analysis are limited 
at the upstream section z1 by contour values such that the zero-velocity contour curve corresponds to 
the wall when assuming the no-slip velocity condition. It should be pointed out that in contrast with 
two-dimensional flow situations, where the positions of streamlines at the solid flow sections z2 are 
determined by conservation of flow rate, the corresponding positions of a streamline stream at the 
solid flow section z2 are unknown in three-dimensional cases. Figure 3 illustrates the respective cross- 
sections of stream tubes related to contour values of the non-zero component w for the Poiseuille flow 
of a Newtonian fluid in a duct of rectangular cross-section (z = zl) and those related to the solid flow 
velocity at z = z,. 
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Upstream velocity contour lines Sections of stream tubes 

JET FLOW CROSS- SECTON TUBE CROSS-SECI"I0N AT ZI 

AT z2 
Figure 3. Upstream and downstream cross-sections of streamtubes for three-dimensional extrudate swell problem 

3. STREAMLINE APPROXIMATION-DISCRETIZATION OF UNKNOWNS 

To approximate the jet surface in a two-dimensional extrudate swell problem. Batchelor and 
HorsfallI6 proposed the following one-dimensional equation to describe the free surface in a meridian 
plane: 

(1 1) 
In this equation, A and B are constants and ro denotes the free surface co-ordinate at the exit section 
z = Z = zo. The above relation, also considered e.g. in Reference 17, was proved to fit well with 
experimental data relating to swell of various polymer solutions and melts. Starting from equation 
( 1  I), a generalization by the authors of this to approximate streamlines in the total flow 
domain, from the Poiseuille flow section z = zo to the solid flow section z = z2 of the free jet, was 
also found to be consistent for streamlines in two-dimensional extrudate swell problems. 

In 3D situations we still adopt approximate fimctions derived from the two-dimensional relations 
proposed in References 13 and 14 to relate stream surfaces f defined in the basic equations ( I ) .  
Accordingly, the mapped functionfmay be written as a function involving the azimuth angle cp such 
that 

R(z) = ro + A (  1 - exp[-B(z - zO)]). 

f ( R ,  cp3 Z) = C,(R. cp. 2) + A @ ,  cp), q(Z)( 1 - exp[-(z - zo)B(cp. Z)l) 

f ( R ,  cp, z )  =f ( R  c p 9  z2) - A(R,  cp) expl-(Z - ZO)B(cp. z)l). 

(12) 

(13) 

in the tube for Z1 < Z < 2,. In the jet for 2, < Z < 2, we assume the equation 

The functions q(Z) and CI(R,  cp, Z) have the same meanings as in the two-dimensional and 
continuity of the equations for f is verified at junction points of abscissa Zo. Streamline warping 
curves I! belong to stream surfaces f(R, cp, Z). The function g, which must satisfy the boundary 
condition (2), is to be computed by point values on the three-dimensional mesh dehed  in the mapped 
domain D*, related to the peripheral stream tube which involves the wall and the unknown free 
surface. 

For the purposes of illustration and understanding of the different quantities involved in equations 
( I  2 and 13), which are mostly related to geometrical considerations, Figure 4 shows flattened views 
of the peripheral stream tube W in the physical flow domain D and of its mapped domain in D* for a 
rectangular duct. The stream tube is limited outside by the boundary surface 9, involving the wall 
Wo and the free surface Co and inside by a stream surfacef, or Y 3 )  close to the surface Yo. As may 
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computational domain D* 
Figure 4. Flattned views of peripheral stream tube in physical domain D and of its transformed domain in mapped 

be expected, the surfaces Yo and 9, of the stream tube 1 are not generally plane. For the mapped 
stream tube $I?*, &(cpZ) are used to denote variables related to the outer and inner boundary stream 
surfaces Yo and Y3 respectively. These surfaces are close enough to ensure that the quantities 
II Ro(cp, Z) - R,(cp, z )  11 are small. Thus, given a section 2 of the flow domain, the mapped peripheral 
stream tube $I?* in domain D* may be defined by the variables (R, cp) such that 

(Po G cp G cpl ,  R,(cp* z )  G R G &(cp,Z). (14) 

In equation (14), cpo and cpl denote the limit values of the azimuth angle cp, the maximum difference 
cp, - cpo being equal to 271 when the duct involves no symmetry. 

According to these considerations, the functions A and B may be approximated as 

cp)  = ao(cp) + Ccl(cp)[R - %(cpI1 + - R0(cp)l2)* (15) 

Similarly, the mapping function g is expressed in the peripheral stream tube by the equation 
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4. GOVERNING EQUATIONSSWELLING CRITERION 

4.1. Governing equations in peripheral stream tube 93 

The equations to be written in the swell problem are considered under isothermal conditions, with 
restriction to flow in the peripheral stream tube. Surface tension, inertia and body forces are ignored 
and no traction on the jet at section z2 is assumed. These assumptions may be considered as good for 
extrusion flows of high-viscosity fluids. The governing equations involve the classical laws of 
conservation and are expressed in terms of the pressure p and unknowns related to mapping functions 

Mass conservation is automatically verified from the stream tube analysis, as already pointed 
out. 
Taking into account the previous assumptions, the classical dynamic equations may be written 
as 

-+/at- + aTv/ar + (i/r)aT,/ae + aTn/az + ( T ~  - P8)/ar  = 0, 

-(i/r)ap/ae + aTre/ar + (i/r)aT8@/ae + a?/& + 2Td/r = 0, 

(1 8) 

(19) 

The use of variables (R, cp, Z )  of the mapped domain D* and derivative operators defined by 
equations (10) together with approximating relations for the mapping functions f and g leads 
to equations (1 8H20) being expressed in terms of the pressure gradient components as 

.01, ap/aR + a, apiacp = B , ,  (21) 

d3ap/aR + a,ap/acp + v,ap/acp = 4. (23) 

In these equations, d, ,  &?,, d,, &I2, a‘,, a3, V,, b,,  b2 and b3 denote functions of { f, g, 
TV}. When expressing the stress components TV in terms of mapping functions f and 9, these 
coefficients are hc t ions  of the unknowns {cro(cp), crl, (cp), Bo(cp), B,(cp), yo(cp, Z), yI(rp, Z ) }  
defined by equations (15H17). Relations (21H23) are written on rectilinear streamlines L* of 
the mapped computational domain D*. Thus the pressure p ,  assumed to be zero at the solid 
flow section z,, may be determined by integration using the relation 

Z 

P(R9 cpt Z) = s, B(R9 4 0 9  C)  dl, (24) 

where the integrand B(R, cp, () is evaluated from equations (21H23). 
In stream tube analysis the equations may be solved on successive stream tubes provided that 
the action of the complementary flow domain is taken into account (see e.g. Reference 10). 
This condition may be expressed in 3D flows by the following equations related to the 
resultant and moment vectors % and ‘iUlo:” 

‘iUl,,=J O M ~ a ( M ) d s = 0 .  
afl 
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In equations (25), aR denotes the surface limiting the domain under consideration. Using 
the basic equations (l) ,  the components of n, the outward unit vector normal to the surface &?, 
may be determined from a normal vector N to the surface given by 

N(g6 + g z f ; ?  - ( f ;  +fi@/f 9 l- -@)1 (26) 

where r and E are defined by equations (9). When applied to the complementary flow domain 
of a stream tube and projected onto the three co-ordinate axes, relations (24) provide non- 
linear boundary condition equations to be considered together with the momentum 
conservation equations for the stream tube. It can be shown" that for ducts involving 
symmetries with respect to the z-axis, equations (22) reduce to the single scalar equation 

( J, on h) - c, = ( J (-PO + T)n dv - c, = 0. ) 
(d) For the constitutive equation related to a Newtonian fluid the stress tensor is given by 

u = 2qoD (28) 
(where qo is the fluid viscosity and D is the rate-of-strain tensor), the components of which, 
written in terms of mapping functionsf and g, are replaced in equations (21H23). 

The set of governing equations must be considered together with the classical 'simple' 
boundary condition equations in terms of the unknowns related to the mapping functions f 
and g. 

4.2. Procedure for determining unknown swell surface 

In this work the procedure for determining the free jet presents several similarities to that already 
adopted for two-dimensional swell studies with stream tube analysis' restricted to a peripheral 
stream tube. The criterion for determining the unknown swell surface Eo in a three-dimensional 
extrudate swell is expressed by the two conditions 

($9,) [I,] = [% = (-PO $- U)n ds; '9.R = OM A a(M) ds] = [O; 01. (30) I,. I,. 
Equation (30) is related to the action of the complementary domain aC of the peripheral stream 

tube 33 (given by equation (23)) limited by the upstream and downstream sections z, and 2, 
respectively 

Equations (29) and (30) require evaluation of the following quantities: 

(i) the components of unit vectors n normal to the surfaces of the domains under consideration 
(equation (26)) 

(ii) the pressure p 
(iii) the stress components Tv at limit sections z = z ,  and z = z2 and for points belonging to the 

The pressure p and the stress components P, unknown at points Mo of the boundary surface Yo 
(wall and free surface), are determined from the corresponding values of p and U on an internal 
stream surface S of the stream tube 9? using equation 

(31) 

inner lateral surface which limits the peripheral stream tube a. 

b ( M 0 )  b ( M )  + (Ro - R)M/aRI, t- O((& - R),) .  
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given cp and 2, the points Mo and M belonging to surfaces Yo and Y respectively. This first-order 
approximation requires the quantity (1 Ro(cp, Z) - R(cp, Z) (I to be small for all sets (9, Z) related to 
the mapped peripheral stream tube. In equation (3 I), &(M,,) and &(M) denote functions evaluated at 
points Mo(R, cp, Z) and M ( R ,  cp, Z) of stream tube W respectively. 

For ducts involving symmetries, such as straight cylinders of regular polygonal cross-sections, the 
constraint (30) may be reduced to the scalar equation" 

Equations (29) and (32) are to be considered together with the governing equations in the 
peripheral stream tube W. 

To approximate the spatial derivatives involved in the governing equations, the 'three-point 
formula' was used for derivatives in terms of R, Z and cp. According to this formula, given a function 
Y ( x )  at three points XI, x2 and x3, with respective corresponding values Y, , Y2 and Y3, the x-derivative 
at x, is approximated by 

[dY/h],, [Y(xi) - y(x2)I/(x1 -x2) - [y(x2) - y(x3)I/(x~ -x3) -I- [Y(xi) - Y(x3)I/(xi -x3). 

(33) 

The use of equation (33) in the mapped peripheral stream tube B* led to consideration in that 
subdomain of two stream surfaces 9, and together with the outer stream surface Yo (transform of 
wall and free surface) and the limiting inner surface 9, (transform of wall and free surface) and the 
limiting inner surface ,Y3. 

5. NUMERICAL PROCEDURE AND SWELL RESULTS FOR EXTRUSION FROM A 
SQUARE DIE 

5.1.  Numerical procedure for solving equations 

When using the governing equations in a peripheral stream tube to determine the unknown surface, it 
is of interest to underline several advantages of the proposed scheme. 

(i) In contrast with classical methods of flow simulation, the mesh used for swell computations 
remains unchanged during the iterative process. 

(ii) A new free surface does not have to be updated in order to check whether or not condition (32) 
corresponds to a minimum: the unknown swell surface is determined by direct computation of 
the unknowns, since this equation is involved in the overall set of governing equations. This 
possibility simplifies the numeral process in comparison with previous approaches with stream 
tube analysis. 

Computational procedures are generally defined in such a way that the discretized governing 
equations of the problem are written as a closed set of equations. The use of stream tube analysis on a 
sub domain, as considered in the present study, leads to mathematical constraints being taken into 
account together with the relevant equations. The approximating schemes adopted for the streamlines 
are defined such that the numbers of equations and unknowns are different. As previously in two- 
dimensional studies of the extrudate swell problemI3 and others involving computation on successive 
stream optimization methods such as the Levenberg-Marquardt algorithm are used (see 
e.g. References 18 and 19). This computational approach has proved its robustness and efficiency for 
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such problems in relation to the significant sensitivity of the equations to changes in the mapping 
functions f and g. This iterative procedure” allows a solution X* of the governing equations to be 
computed by a combination of two algorithms: 

(i) the Newton algorithm, which converges quadratically but requires a good initial estimate X,,] 
of the solution 

(ii) the gradient algorithm, which has a linear convergence but converges for a less accurate initial 
estimate. 

Although optimization methods may be time-consuming when the gradient and Hessian of the 
objective function defined in the minimization problem are to be evaluated, the Levenberg- 
Marquardt iterative algorithm” has proved to be efficient also in terms of computing time for solving 
the governing equations in the subregion 9h of the computational domain. 

5.2. Numerical tests and results 

The steps in our calculations with the 3D code using the Newtonian equation concerned firstly the 
extrudate swell problem related to an axisymmetric duct and secondly the extrusion case related to a 
die of square cross-section with sides of length 2a. 

5.2.1. 3 0  tests for axisymmetric case. In order to test the basic numerical scheme, the problem of 
determining the swell surface of a free jet emerging from an axisymmetric duct of radius ro was 
examined. A peripheral stream tube consisting of an annular axisymmetric cylinder in the mapped 
domain was therefore considered. The tube and jet lengths adopted in our computations were defined 
as 

(ZI -zo)/ro = -4, (z2 - zo)/ro = 10. (34) 

Taking into account the symmetry and periodicity properties of the duct geometry, a subdomain 
limited by planes 0 = g = cp = 0 and 8 = g = cp = 71/5 was selected. The discretization with respect 
to cp involved four azimuth planes. The mesh in the peripheral stream tube involved 13 points in the 
tube and 24 points in the jet in the z-direction. The numerical tests led to the classical swell results 
x = R(z2)/ro = 1.13 for the axisymmetric Newtonian case. 

5.2.2. Results for a die of square cross-section. To compute the extrudate swell surface, a 
peripheral stream tube limited by planes 8 = g = cpo = 0 and 8 = g = ( p l  = n/4 was considered owing 
to the symmetry properties of the duct. Several numerical tests on different meshes led us to adopt in 
the z-direction a similar discretization to that corresponding to the axisymmetric case. The grid in the 
cp-direction involved seven azimuthal planes, leading to a total of 148 unknowns according to the z- 
discretization. For the square duct the respective upstream and downstream cross-sections z1 and z2 
were defined similarly to those in the circular case using the relations 

(z1 - zO)/rM = -43 (z2 - zo)/rM = 10. 

Here rM denotes the average radius related to the square section. The half-length of the square was 
given by a = 0.781 with rM = 1. 

The iterative procedure permitted direct determination of the optimal three-dimensional free 
surface according to the previous considerations. Figure 5(a) presents sections of the computed 
peripheral stream tube involving the stream surfaces 9, (wall and free surface), 9, and 9, for 
planes z = constant. Figure 5(b) shows azimuthal sections of the tube 9 for planes cp = constant, from 
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cp=0.16 

s 1 I I I 
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'1 Cp=0.31 
0 1  I 1 I I 1 I 1 
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8 cp=0.63 
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Figure 5. Computed peripheral stream tube involving stream surface Go (wall and free surface), G I ,  G2 and G3 (cases (a) and 
(b)): (a) cross-sections of peripheral stream tube in die and jet from section z1 to z,; (b) azimuthal sections of tube 8 for planes 

cp =constant, from cp = 0 to n/4; (c) three-dimensional view of computed free surface, featuring discretization points 
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-4 -2 0 2 4 6 8 10 V 
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-4 -2 0 2 4 6 8 10 

cp = 0.0 

cp = 0.16 

cp = 0.31 

cp = 0.63 

q=d4 

-4 -2 0 2 4 6 8 10 

Figure 6. Dimensionless velocity component w/w2 (w2 is the solid flow velocity) for streamlines related to surfaces Go (wall 
and free surface), GI ,  G2 and G3 in various azimuthal planes 

cp = 0 to n/4, and the general jet shape is depicted in Figure 5(c). It may be observed that the liquid 
swells or retracts depending on the azimuthal angle cp. The swell ratio at 9 = cp = 71/4 is found to be 
1' 18 z t  0-01 5 ,  which is close to the computed swell value (1 -1 8) given by Wambersie and Crochet.6 
The ratio corresponding to the relative reduction in size of the jet radius at cp = 0 is found to be 0.925, 
which is consistent with numerical results in the literature. 
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(z - zJ/rM 
Figure 7. Dimensionless stress components TTX/7;t(cp) along streamlines of surfaces Go, 6,. G2 and G3 for various anunuthal 

sections 8 = g = cp, from 0 = 0 to R/4 (peripheral stream tube) 

From basic considerations of stream tube analysis the flow streamlines are determined by the 
intersection of surfaces f and g. Changes in the mapping h c t i o n  g are to be related to the 'warping' 
of the streamline curves, which are plane in two-dimensional cases. The calculations revealed that the 
function g is practically a constant versus the variables R and 2 in the peripheral stream tube. 
Accordingly, in this flow region the streamlines lie in the same plane as in two-dimensional flow 
situations. 
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Figure 8. Dimensionless stress components Ta/T,(cp) along streamlines of surfaces Go, G, , 6, and 6, for various azimuthal 
sections 0 = gcp, from fhetaq = 0 to rr/4 (peripheral stream tube) 

Plots of the axial velocity component w related to the streamlines of surfaces Yo (wall and free 
surface), Y, ,  Y2 and Y, are shown in Figure 6 for various azimuthal sections. It can be observed 
that a constant velocity is obtained in the jet for sections close to the exit plane at z = 2,. The 
dimensionless stress components T"' and T" related t the streamlines of surfaces Yo, 9, and 9, are 
shown in Figures 7 and 8 respectively for various azimuthal sections 8 = g M cp, from 6 = 0 to n/4, in 
the computed peripheral stream tube. In these plots the wall stress components T$(cp) and Tg(cp) at 
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the upstream section zI are used as dimensionless factors. Singularity stress effects, which attenuate 
from the boundary surface Yo to the inside, may be observed particularly for the component T”. It 
should also be pointed out that the component T”, which is found to be zero in planes 8 = g = p = 0 
and 8=g=cp=n/4 for reasons of symmetry (Figure 7), vanishes in two-dimensional flow 
situations. 

6 .  CONCLUSIONS 

In this paper a numerical method based on streamtube analysis has been developed for swell 
problems of a Newtonian fluid in a three dimensional flow situation. Some distinguishing features of 
the streamtube formulation, notably the automatic verification of the incompressibility condition, 
enabled the numerical calculations to be performed for a subdomain of the total flow geometry. 
Owing to these possibilities in three dimensions, a limited number of unknowns were considered, 
leading to reductions in computing time and storage area in comparison with classic flow analysis. 
Although the method was applied to the Newtonian case, the elements presented in this paper may be 
generalized to viscoelastic fluids, including memory-integral constitutive equations, as considered in 
previous two-dimensional studies involving stream tube analysis. As already pointed out, the use of 
rectilinear transformed lines of open streamlines related to the swell problem enables problems 
involved in evaluating kinematic tensors and stresses to be significantly The 
approximation adopted for the mapping function f related to the shape of the streamlines, which 
results from a generalization of the Batchelor-Horsfall equation, may still be considered as realistic 
in 3D swell problems. 

From the numerical point of view the simple mapped computational domain led to the definition of 
simple discretization schemes for the equations. The possibility of computing the free surface and 
singularity effects directly by considering an unchanged grid in the mapped peripheral stream tube, as 
well as the efficiency of the Levenberg-Marquardt algorithm for solving the equations, is to be 
underlined. 

The results obtained by the present method are consistent with numerical data in the literature. This 
work is a first step towards computation of 3D free surface flows for fluids obeying more 
sophisticated constitutive equations. 
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